
f
!

INTERFACING M

Peeking at the New M Windowing API

by Guy Gardner

It's a Different World
With the introduction of the Apple Lisa computer in 1983 and
the Macintosh in 1984, the windowing desktop metaphor has
steadily gained acceptance among microcomputer users. As
an example, by the end of 1992, dollar sales of MS Windows
applications probably exceeded MS DOS application sales
for the first time.

Users demand more consistency in user interface, ease of
use, and user-driveri'applications along with multipurpose
workstations. Leading windowing systems running on mod
em bitmap workstations together with windowing applica
tions answer these user needs.

M Technology is now at a crossroads, after having gone
through steady market growth since its inception. The roll
and-scroll or forms-based user interfaces are no longer ac
ceptable to many users. Without the ability to generate native
windowing-system-based applications, the M market will re
cede as users look elsewhere for windowing applications.

This API approach will make it easier
and faster for M programmers to develop

windowing applications than will all
of the third and fourth generation

languages and tools available on these
windowing platforms.

The MDC or MUMPS Development Committee (the ANSI
Xl 1 committee responsible for the MUMPS standard), is
finishing up the standards process for the M windowing appli
cation program interface (API) specification. When com
plete, this will enable programmers to create native win
dowing-system-based applications in M. These applications
will be portable across MS Windows, Macintosh, OS/2 PM,
and the X Window systems. This API approach will make it
easier and faster for M programmers to develop windowing
applications than will all of the third and fourth generation

April 1993

languages and tools available on these windowing platforms.
New M tools, layered on top of the API, will increase this
productivity.

Architectural Features of the
Windowing API
Initially in the Macintosh Hypercard, more recently the Win
dows-based Toolbook, Visual Basic, Powerbuilder, and
other tools have led to high-productivity GUI (graphical user
interface) programming capabilities without the need to
know the host windowing system's API or low-level details.
Instead of the hundreds oflow-level function calls that C and
Pascal programmers need to know, these environments pres
ent the programmer with a simplified APL This is done by a
series of new paradigms or ways of programming.

Let's look at some of these new programming features.

Separation of Form from Function-a feature that allows the
visual aspects of the windows to be set up in a WYSIWYG
("what you see is what you get") window-painter environ
ment. Programming code is specified in a pop-up window
based text editor and "attached" directly to the part of the win
dow that the code acts on or for. Experience indicates that
this type of programming results in dramatically improved
productivity and enables fairly inexperienced programmers to
create windowing-based applications quickly and effectively.

Attributes with Side Effects-this feature greatly reduces the
complexity of the code by replacing function calls with a
series of attributes, which, if modified, change the system
as a side effect.

The advantages of this feature over traditional coding appear
in the following example demonstrating two ways to move
a window to a new position relative to its current position.

First, the traditional approach (in Pascal-like pseudo-code):

VAR XPosition AS INTEGER
VAR YPosition AS INTEGER
VAR bad AS INTEGER
XPosition:=GetWindowXPosition(MyWindowID)
YPosition:=GetWindowYPosition(MyWindowID)
bad:=MoveWindow(MyWindow,XPosition+20,YPosition)
IF bad THEN HandleError(bad)

Now, the attribute-based version:

MyWindow.XPosition:=MyWindow.XPosition+20

M COMPUTING 13

There are sign.ificant areas in which our
API outshines other windowing-system

application tools by playing up the
advantages of unique M features.

It is easier to remember attribute names for windows and have
side effects handle the low-level details than to memorize
hundreds of functions with their respective parameters and
return values. The system commonly ignores any attempt to
modify an attribute with an invalid value.

Attributes make coding closer to a more declarative program
ming model (desirable) and move away from the complexi
ties of the procedural model (detailing how to do exactly what
you want to do). Think of how much complexity is hidden
behind a single Global SET in Mand you'll get the idea.

The attributes feature also easily handles the hierarchies that
are normally present in windowing-system visual compo
nents. For example, in Visual Basic, to modify the text in a
text field on another window, the following code could be
used:

WindowName.ChildWindowName.FieldName.Text="Some text"

Event-Oriented Processing--enables the programmer to
generate an application controlled or driven by the user in
stead of the software driving the user. The user decides what
and when something is to be done, instead of the software
forcing a series of prompts in a predetermined order. Many
event-oriented systems use a callback metaphor in which the
system software automatically performs callbacks to applica
tion subroutines based on specific user and system events.
These callbacks are usually synchronized rather than asyn
chronous, which means that a given process cannot initiate a
second callback until the event-handler has completed the
first. The system has processing control most of the time and
the application code runs as subroutines, usually taking small
amounts of processing time and reacting only to the event at
hand.

Other aspects of these application tools that further enhance
development are: tight integration of the windowing API into
the application language instead of C's separate include files
and M's external bindings, extensible application environ
ment features (i.e., XCMDs in Hypercard and Custom Con
trols in Visual Basic), and an extensible operating system
environment (i.e., DLLs under Windows and Extensions and
INITs on the Mac).

The M windowing API incorporates the attribute side effect
and event-oriented processing features along with other as-

14 Al COMPUTING

pects of the aforementioned application tools. All that is
missing in the separation-of-form-from-function feature is
the window painter. This should not present a problem since
M-based windowing/forms tools will be adapted to fill this
need. Vendors may even include window painters as part of
their API offerings.

M's Particular Windowing Advantages
There are significant areas in which our API outshines other
windowing-system application tools by playing up the advan
tages of unique M features. This API uses structured system
variables (ssvns) to store all attributes representing the vari
ous aspects of the host windowing system, windows, and
gadgets (the smaller objects/controls that appear on win
dows). These ssvns work and look much like M global arrays,
but are actually local to the job and they have side effects.
Window and gadget attributes are contained in the /\$WINDOW
ssvn and the workstation display information is in the
/\$DISPLAY ssvn while information regarding the current
event being processed is in the /\$EVENT ssvn.

New to the M standard is MERGE, the command that copies an
entire M array substructure onto another without requiring
the programmer to write $ORDER loops to transverse the sub
script levels. This is similar to the SET* capability that was
in MUS, an early variant of the M language. By using the
MERGE command with globals and the /\$WINDOW ssvn, the pro
grammer can easily copy any visible wi:q_dow into a global or
copy a window definition that is in a global into /\$WINDOW,
thereby enabling the window display with a single M com
mand. For example,

MERGE A$WINDOW("myWindow")=AGLOBAL

This is a great improvement over
Hypercard-like tools wherein only a
single attribute can be modified or

examined at a time.

This is a great improvement over Hypercard-like tools
wherein only a single attribute can be modified or examined
at a time. Being able to copy a window's attributes along with
its gadget attributes as represented in a hierarchy of a global
or /\$WINDOW further shows M's advantage. Variants of win
dow and/or gadget attribute definitions can be combined with
standard definitions from M globals into a single /\$WINDOW
entry using a single MERGE command. For example,

MERGEA$WINDOW("myWindow")=ASTANDARD,A$WINDOW("myWindow")=
AVARIANT(l)

April 1993

Some of the attributes defined for windows and gadgets tell
the API what M subroutines to call when certain events occur
in the system. The API automatically will call these subrou
tines, also known as event-handlers or callbacks, when speci
fied events occur. In fact, the API handles most aspects of
most events automatically, relieving the programmer of most
details of the windowing system's operations. For instance,
the API and host windowing system automatically make push
buttons look pushed when they are clicked on and text entry
boxes provide editing features that comply with the host win
dowing system.

As in the Hypercard-like tools, most details about windows
and gadgets are done in the API with attributes. A few func
tions and new commands are incorporated for things that are
not appropriate for attributes. An example is the new ESTART
command, which puts M into event processing mode when
invoked.

The API also allows a single MUMPS job to address more
than one display or workstation at the same time. That single
job can put windows up on multiple displays that are net
worked, and get event callbacks from several users simulta
neously. This is essential for complete support of the X Win
dow networked operating system. Similar capabilities across
Apple's Appletalk and Microsoft's Windows for Work
groups networks are certainly possible. Assuming a vendor
provided the ability, the API running would not preclude an
Mjob on a Macintosh from putting up and running a window
on an MS Windows-based personal computer using a net
work connection (and possibly a nice feature to add to Open
MUMPS Interconnect?).

General Structure
The following is general structure information on the ssvns
used in the APL Most, but not all, of the M windowing API
ssvn nodes fit into the model shown in figure 1.

In this model, window Name is a programmer-defined unique
string identifying a window. For example, my Window
eventName is one of the following: CHANGE, CLICK,
CLOSE, DBLCLICK, FKEYDOWN, FKEYUP, FOCUS,
GOBOTTOM, GODOWN, GODOWNBIG, GOTOP,
GOUP, GOUPBIG, HELP, KEYDOWN, KEYUP, MAX,
MIN, MOVE, PDOWN, PDRAG, PMOVE, PUP, RESIZE,
RESTORE, SELECT, TIMER or UNFOCUS. Not all event
names are valid for all gadgets and windows.

Implementors can extend this list with names starting with a
z.
do Argument is a list of MUMPS entry references that will be
called when an event occurs. For instance, AAPGM, BAPGM2(1)

gadgetName is a programmer-defined unique string identi
fying a gadget on a window. For example, OK-Button dis
playID is a vendor-specified unique string identifying a spe
cific display.

attributeName is one of the following:

• For /\$DISPLAY: BCOLOR, CLIPBOARD, COLOR, COL
ORTYPE, FCOLOR, FOCUS, KEYBOARD, PEN,
PLATFORM, PTR, SIZE, SPECTRUM, TYPEFACE, or
UNITS.

• ForA$EVENT: CHOICE, CLASS, ELEMENT, KEY, NEX
TFOCUS, OK, PBUTTON, PPOS, PRIORFOCUS,
PSTATE, SEQUENCE, TYPE, or WINDOW.

A$WIND0W(windowName,attributeName) = value
A$WIND0W(windowName,attributeName,pos) = value
A$WIND0W(windowName,"EVENT",eventName) = doArguments
A$WIND0W(windowName,"G",gadgetName,attributeName) = value
A$WIND0W(windowName,"G",gadgetName,attributeName,pos) = value
A$WIND0W(windowName,"G",gadgetName,"EVENT",eventName) = doArguments
A$WIND0W(windowName,"M",menuName,"CH0ICE",pos) = menuDisplayName
A$WIND0W(windowName,"M",menuName,"CH0ICE",pos,attributeName) = value
A$WIND0W(windowName,"M",menuName,"CH0ICE",pos,"EVENT",eventName) = doArguments

A$EVENT(attributeName) = value
/\$EVENT(attributeName,pos) = valueA$DISPLAY(displayID,attributeName) = value
A$DISPLAY(displayID,attributeName,pos) = value
/\$DISPLAY(displayID,"EVENT",eventName) = value

Figure 1. General structure model.

April 1993 M COMPUTING 15

• For windows in /\$WINDOW: ACTIVE, BCOLOR, COLOR,
DEFBUTTON, DISPLAY, EVENT, FCOLOR, FFACE,
FSIZE, FSTYLE, ICON, ID, !TITLE, MENUBAR,MIN,
MODAL, NEXTG, PARENT, POS, RESIZE, SCROLL,
SIZE, SIZEMIN, SIZEWIN, TIED, TITLE, TYPE,
UNITS, or VISIBLE.

• For gadgets in /\$WINDOW: ACTIVE, BCOLOR, CANCEL,
CANCHANGE, CHANGED, CHARMAX, CHOICE,
DRAW, DRAWTYPE, EVENT, FCOLOR, FFACE,
FRAMED, FSIZE, FSTYLE, ID, INSELECT, INTER
VAL, NEXTG, POS, RESOURCE, ROWCOL,
SCROLL, SCROLLBY, SCROLLDIR, SCROLLPOS,
SCROLLRANGE, SELECTMAX, SELECTV AL, SIZE,
TBCOLOR, TFCOLOR, TFFACE, TFSTYLE, TITLE,
TOPSHOW, TPOS, TYPE, UNITS, VALUE, or
VISIBLE.

Not all attribute names are valid for all windows, gadgets,
events, and displays. Implementors can extend this list with
names starting with a Z.

• The term~ is a number or string that indicates the position
of a value in a repeating attribute list. For example, 1 or 12-
23-C34-44-55A.

• menuName is a programmer-defined unique string identi
fying a menu associated with a window.

• menuDisplayName is the menu name as displayed to the
user.

• value is the actual value of a specified attribute, such as 1

or "window A."

The gadget level TYPE attribute values supported are: BUT
TON, CHECK, DOCUMENT, FRAME, GENERIC, LA
BEL, LIST, LISTBUTTON, LISTENTRY, LONGLIST,
RADIO, SCROLL, SYMBOL, TEXT, and any implemen-
tor-specific Z types. ·

Keep in mind that most application programmers will only
be concerned with a small subset of the attribute names and

SNOWED UNDER?
Whether you live in California or Colorado, Mississippi or Maine, you know how it feels

to be snowed under from time to time. Deadlines are important and sometimes you
need to call on an outside team of experts to help dig out from under.

Software Technology Services expert staff is ready to assist you in achieving
your information system goals. We speak your language and have a proven

track record for success with MUMPS applications.

SIS can assist with . . . ► project management
► implementation
► systems integration
► programming
► consulting services

If your environment is getting a little too cold for comfort,
give us a call at 1-800-828-5940. Ask for John Perez. We can help.

SOFTWARE TECHNOLOGY SERVICES
10101 Slater Avenue, Suite 214, Fountain Valley, California 92708

16 Al COMPUTING April 1993

event names presented above. The attribute and event names
are short yet fairly descriptive and many readers will be able
to guess the functionality provided by many of them.

... many other attributes exist for both
windows and gadgets but we only have
to specify a few because the proposed

M windowing API defaults them for us. M Windowing API Coding Examples

Now we take a look at coding samples from a component of
medical record-keeping. These simplified examples preview
some aspects of programming in the proposed MDC MUMPS
Windowing APL Keep in mind that even though most syntac
tic and semantic details of the final M windowing API are
known as of this writing, there may be some minor aspects of
the API that will change before it becomes an MDC Type A.

Coding for a simple patient add window may look as it does
in figure 2. Keep in mind that many other attributes exist for
both windows and gadgets but we only have to specify a few
because the proposed M windowing API defaults them for
us. We can reference any attribute in /\$WINDOW, including the
ones defaulted by the API, for any gadget or window known
to it.

Routine pat:
pat

pnmv

April 1993

Routine to run'Patient Add' Application@glg@

'"'\; Create the'patadd' window definition, if not already done.
DO Apati: '$DATA(Awindows("patadd"))
; Put the'patient add' window up. (defines and display it)
MERGE A$WINDOW("patadd")=Awindows("patadd")

Start event processing.
; The API automatically does event callbacks while program
; control at this level stays within the ESTART command.
ESTART

We get here after an event callback executes an ESTOP command.

Take the window down. (stops displaying it and makes it undefined)
KILL A$WINDOW("patadd")
; All done.
QUIT

Event handlers for window'patadd'
The MWAPI does an implied DO to these handlers while control
is within the ESTART command above.

CHANGE event handler for the patient name (text changed).
NEW a
; Get the just edited value from the text gadget'pname'
SET a=$GET(A$WINDOW("patadd","G","pname","VALUE"))
; We are doing required field checks at filing time (in the OK
; button) so don't bother now.
IF a="" QUIT

; If it doesn't look like a name.
IF a'?l.Ul","l.U DO

Make focus stay on the pname gadget by refusing this event.
; This KILL command will also suppress UNFOCUS and FOCUS
; events that are about to be processed by the MWAPI.
KILL A$EVENT("OK") .
; Put up a modal error window (error message box).
; See later detaxs on routine%win.

DO msgA%win("Validation Error","Patient Name format is incorrect")

Exit this event handler and return control to the MWAPI.

Figure 2 continues

/I COMPUTING 17

pnov

ok

exit

halt

QUIT

CHANGE event handler .for patient number (text changed).
NEW a
; Get the-new patient number.
SET a=$GET(A$W("patadd","G","pnumber","VALUE"))
; We are doing required field checks later.
IF a="" QUIT

; If it isn't a number.
IF a'?.N DO QUIT

; Refuse the CHANGE event.
KILL A$EVENT("OK")
; Inform the user of the error.
DO msgA%win("Validation Error","Patient Number must be numeric")

We are only adding new patient therefore we must refuse any
number already on file.
NOTE: This method is not bullet proof on a multiuser system.

IF$DATA(Apat(a)) DO QUIT
; Refuse the CHANGE event.
KILL A$EVENT("OK")
; Tell the user.
DO msgA%win("Validation Error","Patient Number is not unique")

Quit this event handler.
QUIT

SELECT event handler for'OK' button (button pushed).
NEW a
; Get the patient number.
SET a=$GET(A$W("patadd","G","pnumber","V"))

; If no patient number entered the do a required message and exit.
IF a="" DO reqd("Patient Number","pnumber") QUIT
; If no patient name entered do a required message and exit.
IF$GET(A$W("patadd", "G", "pname", "V")) ="" DO QUIT

DO reqd("Patient Name","pname")
Patient Sex is optional.

File data into Apat under patient number.
FOR b="psex","pname" DO
. SET Apat(a,b)=$GET(A$W("patadd","G",b,"V"))
; Signal the MWAPI to stop event processing mode.
ESTOP
; Quit this event handler.
QUIT

; SELECT event handler for the Exit menu item.
; Ignore work in progress and stop event processing mode.
ESTOP
; Quit this event handler.
QUIT

; SELECT event handler for the Halt menu item.
; HALT will also take down all windows and stop event processing.
HALT

reqd(field,gadget) ; Do require message box and set FOCUS to a gadget.
; Set focus to gadget that is missing data.

18 M COMPUTING

Figure 2 continues

April 1993

can

Routine pati:
pati

April 1993

Window "patadd" will get focus back at this gadget when the user
has dismissed the message box window. (see below)
$PDISPLAY is the'principal display' for this MUMPS job.

SET A$DISPLAY($PDISPLAY,"FOCUS")="patadd,"_gadget
; Put up a modal message box.
DO msgA%win("Missing Value",field_" is required")
; Return to caller.
QUIT

SELECT event for the'Cancel' button.
No need to file anything if user canceled.
Signal the system to stop event processing mode.

ESTOP
; Quit this event handler.
QUIT

Setup Awindow("patadd") with the window definition @glg@

Zap old definition of the window. For recompiles only.
KILL Awindows("patadd")

We only need to set up attributes that do not have defaults or
where we don't want the MWAPI defaults.

"· Window level attributes:

Window Title.
SET Awindows("patadd","TITLE")="Add a Patient"

Window Units.
We can use CHAR, PIXEL, POiNT, REL or an implementor
specific Z unit here. All gadgets on this window use CHAR
since UNITS are not specified at the gadget level.

SET A(11 UNITS")= 11 CHAR"
; Indicate that the OK button should be the default button.
SET A("DEFBUTTON")="ok"
; Mark the'main' menu as the window's menubar.
SET A(11 MENUBAR")="main"
; Make window resizable by the user.
SET A("RESIZE")=l
; Allow the user to scroll the window when needed.
SET A("SCROLL")=l

POS and SIZE attributes will be calculated by the MWAPI for us!
Among other defaulted attributes, VISIBLE will default to 1 (true).

Menus and their attributes:

Set up the'main' menu (menubar level).
First menubar level menu is File. The keyboard accelerator is F.

SET Awindows("patadd","M","main","CHOICE",l)="&File"
; The drop down menu is'file'.
SET A(l,"SUBMENU")="file"
; Second menubar level menu is Wow. Accelerator is W.
SET Awindows("patadd","M","main","CHOICE",2)="&Wow"
; The drop down menu is'wow'.
SET A(2,"SUBMENU")="wow

; Set up the'file' menu drop down with one item.
SET Awindows("patadd","M","file","CHOICE",l)="&Exit"
; DO exitApat when selected.

Figure 2 continues

l.f COMPUTING 19

·.• 1

~.·.· 1 • I
1

i
Q

1
j
4 • 1
4
j

1
0
i
l

April 1993

SET A(l,"EVENT","SELECT")="exitApat"
; Set up the'wow' menu drop down with one item.
SET Awindows("patadd","M","wow","CHOICE",l)="&Halt"
; DO haltApat when selected.
SET A(l,"EVENT","SELECT")="haltApat"

Gadgets and their attributes:

Patient Name prompt:
This is a TEXT (entry box) gadget.

SET Awindows("patadd","G","pname","TYPE")="TEXT"
; Position at H,V (in CHAR units as defined at window level).
SET A("P0S")="20,l"
; Size of text display area (one line of 30 characters).
SET A("SIZE")="30,l"
; Allow 40 characters to be entered. Scrolling is automatic if needed.
SET A("CHARMAX")=40
; Title or label. Note: 'N' is the Accelerator.
SET A ("TITLE") ="Patient &Name:"
; Make the Title appear to the left of the text entry area.
SET A("TPOS")="LEFT"
; Event handler for change validation.
SET A("EVENT","CHANGE")="pnmvApatadd"

-\.; Patient Sex prompt:
; This is a LISTBUTTON (dropdown list box) gadget.
SET Awindows("patadd","G","psex","TYPE")="LISTBUTTON"
SET A("POS")="20,3"
; Make 8 characters wide and 3 items shown in the popup list.
SET A("SIZE")="8,3"
SET A ("TITLE") ="Patient &Sex:"
SET A("TPOS")="LEFT"
; Make three choices available.
SET A("CHOICE",l)="Female"
SET A(2)="Male"
SET A(3)="Unknown"

No CHANGE event handler needed.

Patient Number prompt:
SET Awindows("patadd","G","pnumber","TYPE")="TEXT"
SET A(11 POS")="20,5 11 ,A(11 SIZE")="l5,l",A("CHARMAX")=l5
SET A("TITLE")="Patient &Number: 11 ,A(11 TPOS")="LEFT"
SET A("EVENT","CHANGE")="pnmvApatadd"

; OK button:
SET Awindows("patadd","G","ok","TYPE")="BUTTON"
SET A(11 POS")="30,711 ,A(11 TITLE")="&OK"
; SELECT is when users pushes the button.
SET A("EVENT","SELECT")="okApatadd"

; Cancel Button:
SET Awindows("patadd","G","cancel","TYPE")="BUTTON"
SET A("P0S")="40,7",A("TITLE")="&Cancel"
SET A("EVENT","SELECT")="canApatadd"

All done setting up the'patadd' window definition
Note: The API uses defaults to fill in the other
attributes that we have not specified.

QUIT

Figure 2. Coding for 'Patient Add' window.

Al COMPUTING 21

Patient Name: · lc.:.I ____________ ~

Patient ~ex: ._I __ li1_···:
. -~

Patient Ny_mber:

Figure 3. 'Patient Add' window.

After executing DO Apa ti on an MS Windows-b~sed com
puter, the window pictured in figure 3 will appear on the
monitor.

The code fragments in figure 4 illustrate some of the central
ized utility subroutines that could be used by application pro
grammers.

%win; MWAPI utilities @glg@

msg(title,text) ; Put up a modal message box.
NEW wname
; Create a basic box.
DO box
; Add the OK button and SELECT event handler.
DO but("&OK","stopA%win")
; Run the modal window.
DO run
; Zap the message box.
; NOTE: FOCUS moves back to the callers window at this point.
KILL A$W(wname)
; Return to caller.
QUIT

bbox(titie,text,butl,but2~but3,but4,but5)
NEW wname,answer
; Create a basic box.
DO box

Put up a modal button box.

; Add the buttons that were specified, the first two are required.

22 Al COMPUTING

Figure 4 continues

April 1993

DO but(butl,"butdown"%win")
DO but(but2,"butdown"%win")
IF$DATA(but3) DO but (but3, "butdown" %win")
IF$DATA(but4) DO but (but4, "butdown" %win")
IF$DATA(but5) DO but(but5,"butdown"%win")
; Run the window.
DO run
; Zap the window.
KILL "$W(wname)
; Return the button name that was pushed.
QUIT answer

prompt(title,text,default); Put up a modal prompt box.
NEW wname,answer

; Create a basic box.
DO box
; Add a TEXT gadget to the window.
SET "$W(wname,"G","answer","TYPE")="TEXT"
SET "$W(wname,"G","answer","POS")="2O,1"
SET "$W(wname,"G","answer","SIZE")="3O,l"
SET "$W(wname,"G","answer","CHARMAX")=5O
; Set up in the title.
SET "$W(wname,"G","answer","TITLE")=title
SET "$W(wname,"G","answer","TPOS")="LEFT"
; Set up the default answer.

5ET "$W(wname, "G", "answer", "VALUE")=default
; Run the window.
DO run
; Get the text that was entered.
SET answer="$W(wname,"G","answer","VALUE")
; Zap the window.
KILL "$W(wname)
; Return the text.
QUIT answer

ask(title,text) ; Put up modal ask box.

box

April 1993

NEW wname,answer
; Create a basic box.
DO box
; Add OK button.
DO but("&OK","butdown"%win")
; Add Cancel button.
DO but("&Cancel","butdown"%win")
; Run the window.
DO run
; Zap the window.
KILL "$W(wname)
; Return to caller with'OK' or'Cancel'.
QUIT answer

Subroutine to create a basic box (invisible)
Generate a unique window name. NOTE: wname is NEWed by the caller.

wname="%win-"_$H_"-"_$R(5OO)
Copy window template in a global into "$WINDOW.

; Note: VISIBLE is false and "%win("box") has been
; previously setup for our use.
MERGE "$W(wname)="%win("box")
; Override default window title and title of LABEL gadget.
SET "$W(wname,"TITLE")=title
SET "$W(wname,"G","message","TITLE")=text
; Box is invisible but ready to use.
QUIT

Figure 4 continues

Al COMPUTING 23

but(txt,hand); Add a new button to the box.
; Set gadget type
SET A$W(wname,"G",txt,"TYPE")="PUSH BUTTON"
; Set text of button.
SET A$W(wname,"G",txt,"TITLE")=txt
; Set event handler for a push of the button.
SET A$W(wname,"G",txt,"EVENT","SELECT")=hand
; Normally, some code would appear here to position the button on the window. This is left as
; an exercise to the reader.
QUIT

butdown ; Generic handler for a button press that needs handling.
; Get the name of the button pushed.
SET answer=A$EVENT("GADGET")
; Take out'&' if used as accelerator.
SET answer=$TR(answer,"&")
; We are done.
GOTO stop

run ; Make box visible (modal).
SET A$W(wname,"VISIBLE")=l
; Move focus to this window.
SET A$DISPLAY($PDISPLAY,"FOCUS")=wname
; Do event processing for the modal window.
;NOTE: Only this'modal' window gets events now.
ESTART
; Window has completed, return to caller for further processing.
;processing.
QUIT

stop ; Generic handler to stop the window from running.
ESTOP
; Return to the MWAPI.

QUIT

Figure 4. Coding examples for window utilities.

The M windowing API also supports the following features
not covered in figure 4: menu items with checked items, a
GENERIC box gadget that allows the user to draw and sup
port a particular style of gadget entirely in M code, dropdown
list box and list box gadgets, most other standard gadgets that
one would expect for M applications, and MTerm, a type
of window that supports older style dumb terminal-based M
applications. There are many other features and functional
ities.

An MDC working group has discussed adding two new com
mands or functions to M that give the programmer the ability
to generate and use native window resources as provided by
the host windowing system or the vendor. The first command
would "snapshot" a window that is currently in /\$WINDOW into
a specified resource file. A window design utility could use
this functionality. The second would restore a window defini
tion, in a resource file, back into /\$WINDOW. The running ap
plication program could- use this side of the functionality.

24 M COMPUTING

These commands would allow M-based window painters to
"save" prevalidated, compiled window definitions that could
be "restored" very efficiently at runtime. This functionality
would probably be introduced as implementor-specific ex
tensions to the M windowing API since it will not be included
in the initial standard.

A window painter could be created in the API by a main
painter window by using menu items to allow window cre
ation and editing and the gadgets on them. A window will
appear separately but will have special event-handlers in
stalled to select a gadget, drag one to a new location on the
window, and perform other window-painter functions.

The programmer would enter M code or subroutine entry
points to use at runtime by painting a window. When the win
dow definition is saved, it would be merged out of /\$WINDOW

into a global and have the event-handlers reset to remove the
window-painter handlers and to install the actual runtime
event-handlers that the programmers specified.

April 1993

Fitting the API with the Standard
The MDC will be introducing enhancements to the standard
M that may include features such as object-oriented program
ming, general synchronous and asynchronous event-han
dling, static M variables, and others. Designing M to enjoy
maximum compatibility, the API model should be expanded
or even layered under a different scheme. It seems likely that
windows and gadgets will be able to be tucked into a class
hierarchy wherein attributes and their side effects become in
stance variables and methods of a class.

Down the API Road
The MDC will not be producing an initial standard that fills
the needs of all application developers. That will be left for
the future. Meanwhile, M vendors have an approved way
of providing additional functionality without interfering with
future additions to the standard. The ability to call machine
level code that bypasses the API and a "Z" namespace for
additional attribTh:es and events for windows and gadgets are
just two such features. Eventually the API will be enhanced
to support these new features. The ssvn approach should
make this easier when compared with a function-based API in
that it is easier to add new attributes to ssvns with reasonable
defaults than it is to add new parameters to existing func
tions.

M Prospects
The Gartner Report commissioned by the M Technology As
sociation indicates that the worldwide M market will double
in size in the next four years. This should tell us that M Tech
nology is indeed healthy. In fact, it may be that M is on the
verge of vast market expansions as technologically superior
features are added to the language over the next year or two.
Where else are ANSI standard open systems supporting por
table applications across all major windowing systems? Add
in M's high productivity along with the ease of use built into
the windowing API and you have a winning combination.

More Information on the
Windowing API
For additional information contact the M Technology Associ
ation office for copies of MDC MUMPS windowing API
documents. The following documents may be of special in
terest: Xl 1/SCl l/TG4/93-3 and Xl l/SCl l/TG4/WG6/93-
12. Some M vendors already are working to support the API
and also may be a source of information; some already have
alpha and early beta copies of M to support the API available
to developers. Al

Guy Gardner is chief research engineer and tools product manager at
Collaborative Medical Systems in Waltham, Massachusetts.

Invitation to Authors frotn the Editors

The editors of M Computing (formerly MUMPS Comput
ing) welcome articles and news items submitted for publi
cation. Topics include but are not limited to M application

areas, new M systems and installations, transfer of M applica
tions, interfacing systems, needs of computing, programming
techniques, challenges of technology, and related areas. Also,
send your book reviews, information about meetings (past and
future), programming tips and tricks, product announcements,
industry news, and news of MUMPS users' groups worldwide.

We'd like to hear your article ideas. Your article will be
reviewed and, if accepted for publication, will appear in one

April 1993

of the following issues. Mail or fax a brief description of
your proposed article to Marsha Ogden, managing editor.
You will receive a copy of author guidelines and procedures
for submitting articles.

Final determination about any copy submitted for publica
tion in the magazine rests with the editors. All material
is subject to editing. Contact Marsha Ogden, Managing
Editor, M Technology Association, Suite 205, 1738 Elton
Road, Silver Spring, MD 20903. Phone 301-431-4070,
fax 301-431-0017, or by FORUM. Al

Al COMPUTING 25

