
Networked Tertninals in a
UNIX/M Environtnent

by David Schulz

HapoFederal Credit Union is a $100 million financial
institution that has used M since 1981. In September
1991, the credit union migrated from a Digital Equip

ment Corporation (DEC) PDP 11/70 running lnterSystems'
M/11 + to a networked configuration consisting of an IBM
RS 6000 (Model 550) and two secondary 486 PCs all running
InterSystems' M/SQL for UNIX systems.

This article discusses issues related to character-based termi
nal (VT-type) and serial printer connectivity utilizing termi
nal servers in an Ethernet network. Although specific vendors
are mentioned, this article is not a review of vendors. Its sole
purpose is to share what we have found that actually works
in practice.

Direct Connect Versus
Networked Terminals
For years, life was simple. The RS-232 plug on the back of a
terminal ultimately connected to a corresponding RS-232
plug on the back of the computer. It may have snaked its way
under counters, into jumper boxes, through ceilings, and out
of jumper boxes, but when a user logged on, the same device
number was assigned. That device number always corres
ponded to a given plug on a distribution panel, and best of
all, $1 was always that device number.

Printers were simple, too. A printer's consistent device num
ber was known and tables could be built to "tie" terminals
to printers. The teller's receipt on terminal #100 could be
automatically sent to device #101.

Finally, in the stand-alone M/11 + environment, terminals
could be "tied" to specific applications so that at the press of
RETURN the user was directly in the application and subject
to total control. The user never saw M and certainly never
saw an operating system. (Indeed, there wasn't one other
than M.)

In the world of networked terminal servers, devices are con
nected directly only as far as the server. From there, it is onto

46 M COMPUTING

the Ethernet and to one or more computers available on the
network. There is no need for A/B switches. Every computer
on the network is potentially at one's finger tips. Further,
every printer on the network is potentially eligible to receive
output from any computer on the network.

As is often the case when changing environments, with some
thing gained, something is lost. In this network, with each
new log-on connection a new $1 value is assigned. It is no
longer possible to rely on $1 being a consistent device number
relative to a physical location. The application can no longer
determine that the user is on device X located at teller station
Z. Therefore, it is necessary to send the receipt to device Y
which is also at teller Z. Also, how can the application even
find a printer in this network? What if it is desirable to send
some e-mail to a terminal, for example? To top it all off, when
a connection is made, the user has an operating system to log
onto prior to even getting to the M application.

Wanting It All
The objective of the credit union's cq_p.figuration was to take
advantage of the flexibility of networked connections without
sacrificing abilities upon which existing applications were
built.

• The ability to determine the physical location of a given
terminal in order to determine the physical location of a
printer corresponding to that terminal.

• The ability to "tie" terminals to applications, so that when
users press RETURN they immediately roll into the appli
cation, bypassing any UNIX log on.

• The ability to open and output to a connected terminal that
is not running an M application.

• The ability to print over the network and have printers
shared by multiple computers on the network.

The LAT Protocol under UNIX
Ki Research of Columbia, Maryland, provides DEC's LAT
(Local Area Transport) protocol for more than thirty different
UNIX hardware platforms. LAT is particularly efficient in
handling character terminal communication over a network,

February 1993

while also providing host-initiated connections ("reverse
LAT") to printers also on the network. Utilizing Ki's prod
uct, known as KiNET, in conjunction with M/SQL' s ability
to communicate with UNIX via function calls and "named
pipes," we were able to meet all of the goals stated above.

KiNET allows the system administrator to create LAT "serv
ices" that are broadcast for availability on the network. Users
stipulate at the terminal-server level the service to which they
desire connection. At installation, KiNET creates an initial
service to the host, which is a standard UNIX log-on process.
Users connecting to this service appear as any other UNIX
user.

Having It All
In addition to providing a standard UNIX log-on service, Ki
NET affords the system administrator the ability to create
additional services that connect to a host and proceed directly
to the operation of a specified task: for example, a user-writ
ten shell script. 'fie system administrator may optionally
stipulate the UNIX user identification associated with the ser
vice so as to maintain security on a UNIX level if desired.

The primary machine in the network is the RS6000. The PCs
are connected to it in the event of its failure. We anticipated
that our users would typically desire to establish connection
to the RS6000 and maintain that connection until specifically
requesting to terminate. They were accustomed to pressing
RETURN, running an M application until completion, and
eventually seeing "Exit." An additional step of connection
with each iteration of that process was undesirable.

✓✓ ••• security is maintained at the applica
tion level ... the overhead . .. is

negligible, in management's view."

A UNIX shell script was developed to be the "front-end" for
KiNET connections, the task that KiNET executes upon con
nection. The shell script was designed to be a loop which
reads 0-n characters and then proceeds to M and a central M
routine. Upon halting, M passes control back to the shell
script which displays "Exit" on the terminal and waits for the
next iteration of the loop. Should the user type "BYE" instead
of simply pressing RETURN, the shell script terminates and
the connection is terminated. Control is then passed back to
the terminal server.

February 1993

For connections established in this method, KiNET main
tains special UNIX environmental variables containing the
physical port number associated with the server and the
server's name or address. Once control is passed to the central
M routine, these environment variables are examined via M
to UNIX communication methods. We then may use this in
formation to pass control effectively over to an application
and directory that the physical terminal is "tied" to.

By maintaining the connection to the host until the user ex
pressly terminates it, we are able to open and output to termi
nals that are in "Exit" (not running an M application). As a
device initially connects, we maintain a table of its physical
address and its $I value. Upon disconnection, this table also
is updated. Prior to sending output to the terminal, the soft
ware is able to determine if the connection is still established
by checking the table in conjunction with a UNIX system
status of devices running the shell script.

KiNET creates consistent specific device names for printers
that ultimately link to the physical port on the server. Thus,
printer device locations are always consistent.

From the average user's standpoint, the system appears as it
always has. There is no interface to UNIX and security is
maintained at the application level. Further, the overhead as
sociated with this method is negligible, in management's
view.

Summary
We have found that utilizing LAT in a networked UNIX envi
ronment allows desirable flexibility and speed with a com
fortable and secure user interface. ❖

David Schulz is data processing manager for Hapo Federal Credit
Union in Richland, WA. He has been in charge of hardware and soft
ware development for the credit union since 1981. He previously wrote
an article, "MUMPS Applications in Business," for the MUG Quar
terly, vol. XX, no. 2.

M COMPUTING 47

