
Usability Testing of a
Hyper-M Application

1Jy Aviva Furman and Thomas Munnecke

Abstract
There has been a heightened concern within the M commu
nity about the usability of software products. Easily usable
software is not a guaranteed byproduct of a graphical user
interface (GUI). Several methods contribute to creating soft
ware products that are easy to learn and use. One method is
usability testing-evaluating the use of a prototype system
by representative users performing typical tasks. This article
describes a usability test conducted on Hyper-Mail, an e-mail
application under development that uses Hyper-M, Science
Applications International Corporation's (SAIC) visual-de
velopment environment (VDE).

Introduction
Developers of M systems are recognizing the importance of
creating sophisticated user interfaces to compete in today's
software market. There has been much discussion within the
M community about which GUI to use and whether to bind
to the X Window protocol or develop an M-windowing appli
cation program interface (API). There has been little discus
sion, however, on just how to go about creating "usable" soft
ware. Usability has been defined as the ease with which
people in a defined group can learn and use a product.[l]
Usable software is not an automatic byproduct of a GUI appli
cation, even when that application has been developed using
an APL Though APis do promote a consistent look and feel,
developers still have a wide range of possibilities in creating
an interface. Usable software evolves from following certain
guidelines, principles, and methodologies.

Much has been written regarding principles and guidelines
for interface design. [3 ,4,6] Principles provide suggestions of
a general nature such as "Know thy user" or "Engineer for
errors." Guidelines provide more specific recommendations,
such as "Provide feedback for all user actions." Following
principles and guidelines is a good starting point for develop
ers of GUI applications, but even with a thorough knowledge
of the principles and a strict adherence to guidelines, design
ers can go astray. Developers should evaluate the usability

34 M COMPUTING

of prototype software through actual use by a representative
sample of users. Based on the results of the usability test,
developers can refine the prototype system (see figure 1).

; Usability testing procedure
Design prototype system based on guidelines and

user input
D Q:(DEADLINE=+$H)!(PROBLEMS=O)

Define usability test objectives
Select representative test subjects
Design a test scenario which will satisfy
objectives
Perform test
Compile and evaluate feedback
Incorporate modifications for next iteration
Q

Figure 1. M pseudo-code for usability testing.

Usability Testing and
Functional Testing
M developers commonly include functional testing, or alpha
beta testing, as part of the development cycle of a product.
On the other hand, developers rarely perform usability testing
as a distinct phase of development; this has been important
but often omitted. The greater percentage of effort devoted
to user interface makes usability testing highly important,
however. Usability testing differs from functional testing in
several significant ways.

Usability testing focuses on a product's presentation, not its
functionality. The presentation of a product is the way in
which it communicates with the user. This includes all of the
aspects of the interface: screens, menus, documentation, help
text, and error messages. [3] Usability tests most often at
tempt to pinpoint aspects of the presentation that make the
product difficult to learn or use. In contrast, functional testing
focuses on the functionality of a product, attempting to un
cover bugs and errors in the software.

Ideally, usability testing begins early and continues itera
tively throughout the development cycle. Functional testing
usually occurs toward the end of the cycle. Early usability

February 1993

There has been much discussion within
the M community about which GUI to use
and whether to bind to the X Window pro
tocol . .. There has been little discussion,

however, on just how to go about creating
,✓usable" software.

testing actually can contribute to the planning and design of
the interface to emulate real-world use. For early testing, the
key is to prototype "testable chunks." Iterative testing results
in stepwise refinement of an interface. Done in this manner,
there should be no major changes necessary as the product
shipment date draws near.[2,5]

Usability testing is conducted in a more controlled environ
ment than functional testing. Subjects are chosen to reflect
the expected users of the product. Tasks are designed that
reflect typical use of the product in a real-world setting. Infor
mation regar1ling the subjects' interactions with the software
is methodically recorded by observers or by a video camera.
Subjects also may complete questionnaires, which provide
additional feedback. Finally, it is important to test enough
subjects in order to ascertain whether problems are idiosyn
cratic or global. In functional testing, developers rarely have
an opportunity to observe actual use of the software. The de
veloper must rely upon the testers to accurately report bugs.

The Hyper-Mail Prototype
Hyper-Mail is a GUI e-mail application, developed using
SAIC's programming tool for the M environment. The
Hyper-Mail prototype is compatible with existing MailMan
data structures, and echoes its conceptual structure and func
tionality. Hyper-Mail has a modem point-and-click windows
interface, which makes it more intuitive to use. Hyper-Mail's
desktop can be seen in figure 2. Approximately 50 percent of
Hyper-Mail's planned functionality was available when the
usability study was undertaken. The task list focused on the
functions that were available.

Hyper-Mis a powerful prototyping tool, supporting "outside
in" development. With Hyper-M, developers create screens
and make graphical modifications without writing a single
line of M code. These screens are then linked with underlying
actions through scripts: M programs that use high-level func
tions for performing screen manipulation. With Hyper-M,
the user interface can be developed independently ofM appli
cation code. Scripts can be generated quickly using high
level functions for screen manipulation. The net result is
rapid prototyping. Additionally, systems can be modified
easily based on results of usability testing.

February 1993

MIIS™

POLYLOGICS

MUMPS

We turn running MIIS programs into running
MUMPS programs. Efficiently, with maximum
accuracy and minimum down-tim~.

MIIS in, MUMPS out. That's all there is to it.

We specialize in MUMPS language conver
sions. We also convert MAXI MUMPS, old
MIIS, BASIC and almost anything else into
standard MUMPS. Polylogics wi.11 be there with
experienced project management, training
and documentation.

So, give us a call today. Ask for a free demon
stration on a few of your programs. That's all
there is to it.

POLYLOGICS CONSULTING
136 Essex Street
Hackensack, New Jersey 07601

Phone (201) 489-4200
Fax(201)489-4340

MIIS is a trademark of Medical Information Technology. Inc.

You hove 3 new messages.

Sender Subject Dote Sent Recipients

Pharmacist. r ran lmportonl Meeting Sep 23. 11 :54
Nurse. Normo Going on Vocation Sep23.i1:54 122
Manager. Martha Stoff Meeting Rescheduled Oct 17. 12:23 II

- @1~1t;tf} QiwP%t,1tmt @f,.~i,.;i+r01\f$

f1!£ug;:;;;;; Qtt1iiwf14:;;;~ fWi~w;inl

Figure 2. Hyper-Mail desktop.

The Hyper-Mail Usability Study
The purpose of the usability study was to determine aspects
of the Hyper-Mail presentation that would interfere with its
ease of learning or use. We were interested in determining
whether users who are familiar with MailMan' s functionality
and GUI-style applications could be productive on Hyper
Mail with little or no training.

We chose representative subjects for the usability study,
those who would be the expected users of the Hyper-Mail
product. We assumed that most Hyper-Mail users would
have some familiarity with MailMan. In addition, we chose
subjects who had some familiarity with using a mouse and a
GUI. These users were best able to evaluate the consistency
of the Hyper-Mail interface. In addition, we did not wish to
take the time to train subjects on GUI basics given the limited
time of the usability test.

Early usability testing actually can con
tribute to the planning and design of the

interface to emulate real-world use.

A total of twelve volunteers participated in the study, conducted
in two separate sessions. Subjects in the first session were clini
cians and administrators from a local hospital. Subjects in the
second session were SAIC employees. We resisted the tempta
tion to recruit in-house programmers. Although readily available
and enthusiastic, they did not fully represent the expected end
user of the product. Subjects' experience with MailMan ranged
from novice to very experienced.

36 M COMPUTING

Procedure

The two-hour usability test session consisted of three seg
ments. During the first segment, we introduced subjects to
the purpose of usability testing and briefly demonstrated the
Hyper-Mail prototype system in what was meant to be a coop
erative, nonthreatening atmosphere. Subjects were assured
that the purpose of the test was to evaluate the software, not
their expertise at using it. We stressed our need to know about
any aspect of the interface that they found confusing, noting
that if one user was confused, it was likely that others would
be. We let subjects know that we valued their suggestions
and appreciated their taking the time to participate and con
tribute to the development of a more usable interface. During
a brief demonstration of the Hyper-Mail system, we reviewed
basic GUI interaction methods, such as scrolling through a
list and selecting a push button.

During the second segment of the two-hour session, subjects
individually performed tasks found in the test scenario. The
tasks were typical of using MailMan, such as reading new
mail, finding a particular message, or looking up information
on a user. Each subject was paired with an observer to record
the ease with which the subject completed the task, any spe
cific difficulties, and any suggestions offered by the subject.
The observers made sure that subjects kept their focus on the
task list, helped subjects if they got stuck, and encouraged
subjects to suggest improvements to confusing aspects of the
interface. Following the tasks, subjects rompleted a post-task
questionnaire designed to capture general feedback about the
system and the usability test procedure.

Subjects and observers had a debriefing session about their
experience with usability testing of the Hyper-Mail prototype
as the final segment. The group discussed reactions to Hyper
Mail as compared with the non-GUI MailMan, ways to im
prove the Hyper-Mail system, and general comments about
the usability test procedure.

Following the test sessions, observers met to discuss and
compile their observations. We organized this information
into a list of problem areas and possible solutions (see figure
3). In most cases, a problem area was experienced by more
than one subject. Sometimes, a problem area was unique to
a particular subject and in a few cases, subjects actually had
opposing views about an interface issue. Problem areas fell
into three sections: system-wide Hyper-M interface issues,
systemwide Hyper-Mail interface issues, and specific Hyper
Mail issues. We discussed and recorded possible solutions to
each problem area.

February 1993

Results
According to feedback in the post-test questionnaire and the
debriefing session, the overall reaction to the Hyper-Mail in
terface was positive. Subjects were impressed with its ease
of use and felt that users could become productive quickly on
the system with little or no training. In comparing Hyper
Mail with the non-GUI MailMan, subjects found Hyper-Mail
more intuitive, faster, and more fun. One subject remarked,
"When will Hyper-Mail be available? Yesterday, I hope."
This sort of encouraging feedback assures developers that
they are on the right track.

Though positive feedback is encouraging, the real value of
the test comes from isolating problem areas in the interface
and obtaining suggestions for improvement. There were sev
eral areas that were consistent problems. One systemwide
problem involved the ease of accessing different functions.
One subject remarked that a user should never be more than
one screen awax from the desired function. In the prototype
system, functions were not always directly accessible. For
example, to query the recipients of a message, it was first
necessary to read the message. This design flaw was a rem
nant of the linear conceptual model of the non-GUI MailMan.
In a linear model, it is necessary to perform a sequence of

The Hitchcock Clinic, a component of the
Dartmouth-Hitchcock Medical Center, seeks the
following professionals for its busy Computer
Services Department:

l:::~~~mer
Applicants should possess Mumps language
experience and familiarity with healthcare
information systems.

The Clinic offers a competitive salary and
lucrative fringe benefits package. Interested
applicants should forward their resumes and
salary requirements to: Brigid Murphy,
Recruiter, The Hitchcock Clinic,
One Medical Center Drive,
Lebanon, NH 03756.

An equal opportunity employer.

~ Dartmouth-Hitchcock
~,. Medical Center

February 1993

The Hitchcock Clinic
Lebanon, New Hampshire

steps to invoke an action. In the object-oriented model, a user
need only select an object, such as a MailMan message, then
select an action, such as querying recipients. The intermedi
ate step of reading the message should be unnecessary. The
solution was apparent from watching subjects try to invoke
functions. They consistently hunted for the functions on the
action bar. By making functions appropriately available on
the action bar, users would be able to access them more di
rectly. Figure 3 shows problem areas and possible solutions.

When problems are identified in the devel
opment stage, user acceptance is increased

and user frustration is decreased.

Other problem areas included occasional lack of appropriate
feedback for user actions, instances of unclear or ambiguous
text on push buttons, cumbersome methods for selecting mul
tiple items from a list, and inconsistent methods for identi
fying recipients of a message. In general, feedback from sub
jects was based on observing what subjects did and listening
to what subjects thought. For example, one might observe a
subject having difficulty selecting multiple baskets from a
list, and then listen to a subject's suggestions on how to im-

MUMPS Bridgeware is the fastest way to convert the source code of your
original MIIS programs with 100% aa::uracy.

MUMPS Bridgeware also transfers your Database at 20 Mbytes/h,
decoding the original disk blodcs into MSM or MUMPSNM disk blocks.

Let MUMPS Bridgeware protect your software investment. We
guarantee your satisfaction and minimum down-time.

The only thing your users will notice is increased system performance.

........... • C) CompSdentia , .
:::=";' Rua Bario do Flamcngo, 3Z - 6° andar ' · •
~ Z2220-080 • Rio de Janeiro - RJ - Brazil I,

Phone 5S Zl ZOS-44Z3 • Fu 55 Zl 285-7852

More than 100.000 programs converted I

M COMPUTING 37

Issue Possible/Implemented Actions

Subjects had difficulty finding the
appropriate push buttons to perform
certain options. Subjects repeatedly
searched the action bar to find options.

Make all actions appropriately available from the action bar. Disable actions when they do not apply to the current
state. Make frequently used options available as push buttons.

Subjects wished to receive confinnation
after the system performed an action,
such as saving messages to a basket.

• Display confirmation message on a reserved area of the screen. No action is required from the user.
• Use pop-up window to confirm that action has occurred. User must press "Enter" to continue.
• Use pop-up window to indicate that action is occurring. Give user the opportunity to cancel before action is complete.
• Allow user to select one of the three options through user preference.

Subjects noticed inconsistency between
looking up users and looking up groups.

Enhance group look-up to behave like user looksup.

Text on certain push buttons was
ambiguous or unclear.

• Make push buttons larger so that labels can be more descriptive.
• Rely upon training, online help and familiarity with the new system.

Figure 3. Problem areas and possible solutions.

prove multiple selection. In fact, many subjects had difficulty
selecting multiple items from a list, and they offered a wide
variety of suggestions on how to better implement multiple
selection. The indisputable lesson is that this aspect of the
interface needs improvement; the developers must decide
how best to implement the modification. A subsequent us
ability test could determine if they had made the right choice.

Conclusion
As M systems' developers move from glass-teletype inter
faces to GUls, they should be aware of methods to create
interfaces that are easy to learn and use. Although program
mers have varying opinions on the best way to achieve these
qualities, usability testing is a critical step in the development
process. It helps to identify design obstacles and ensure that
the end product is indeed usable.

Though usability testing is not without a price, it is certainly
cost-effective. When user-interface problems are identified
in the development stage, user acceptance is increased and
user frustration is decreased. In addition, an intuitive inter
face requires minimal user training. An ounce of usability
testing is worth a pound of user training.

References
1. M. Dieli, "The Usability Process: Working with Iterative
Design Principles," IEEE Transactions of Professional Com
munications, 32:4 (December 1989), 272-277.

2. J.D. Gould and C. Lewis, "Designing for Usability: Key
Principles and What Designers Think," Communications of
the ACM 28, 3 (March 1985), 300-311.

38 M COMPUTING

3. J .N. Mosier and S .L. Smith, "Applications of Guidelines
for Designing User Interface Software," Behaviour and In
formation Technology 5(1), 39-46.

4. D. Norman, "Design Principles for Human-Computer In
terfaces," Readings in Human-Computer Interaction, Mor
gan Kaufmann Publishers, 1987, 492-501.

5. S. Rosenbaum, "Usability Evaluations Versus Usability
Testing: When and Why?," IEEE Transactions on Profes
sional Communications, 32:4 (Decembe_r 1989), 210-216.

6. B. Shneiderman, Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Reading, MA:
Addison-Wesley Press, 1986. ❖

Thomas Munnecke is assistant vice president of the HyperWare Divi
sion of SAIC. He is a past vice chair of the MUMPS Users' Group
and is also on M Computing' s Review Board. He was instrumental in
developing Hyper-M, VA FileMan, VA MailMan, and VA Kernel.

Aviva Furman is a principal application developer in SAIC's Hyper
Ware division. She currently is developing Visual FileMan and Hyper
Mail. She has a B.S. from Carnegie-Mellon University and an M.S.
from the University of Washington. Her interests include usability,
user-interface design, and gardening. She telecommutes from her is
land home in the Puget Sound. Phone: 206-567-4638. E-mail: afur
man@seattleu.edu.

February 1993

