
Question: We recently found the fol
lowing code in a client's system:

FOR X=X:l:X+lO S $P("DATA(X),";"
,3)=1

We know this is wrong-because X
keeps getting reset, this just keeps go
ing forever. The problem is, the code
appears to work. What's going on?

Editors: This is a misunderstanding
of how the FOR command works. In
the example you gave (we changed
the code to make the example clearer
and to protect you and your client),
we assume the variable X was given a
value prior to entering this line.

The argument of the FOR has two com
ponents: the index variable (the vari
able to the left of the equal sign) and
the parameters that define the loop
(the three expressions to the right of
the equal sign). When M encounters
a FOR, it evaluates all the expressions
in the parameters first and saves
these, internally, as three values:
starting value, incrementation value,
and ending value.

Once the parameters are evaluated, M
sets the index variable to the starting
value and processes the rest of the
line. When the line is complete, M re
turns to the FOR command to decide
what to do next. If the current value
of the index variable plus the incre
mentation value exceeds the ending
value, Mis done with this FOR. (If the
incrementation value is negative, M
looks to see if the sum is less than the
ending value.)

16 M COMPUTING

JUST ASK!

Otherwise, M increments the index
variable by the incrementation
amount and processes the line again.

Notice that the expressions in the pa
rameter list were evaluated only once.
Another way of illustrating this is the
following:

+l SET START=l,INCREMNT=2,END=lO
+2 FOR INDEX=START:INCREMNT:END K

START INCREIDIT, END W ! , INDEX

This code will produce the following:

1
3
5
7
9

In your example code, the variable X
is used as the starting value expres
sion, as part of the ending value ex
pression, and also as the index vari
able. Since the expressions are
evaluated only once, the FOR loop will
run eleven times.

Question: I just noticed that the con
tains operator on my system returns
true when I ask if my string contains
a null. I've checked this on two other
implementations and they all appear
to do the same thing. Now that I know
this I can code for it, but why do they
do that?

Editors: The answer lies in basic set
theory. The following is taken from
Basic Abstract Algebra, by P.B.
Bhattacharya, S. K. Jain, and S.R.
Nagpaul, 1986, Cambridge Univer
sity Press: "Let A and B be sets. A is
called a subset of B if every element
of A is an element of B . . . Further,
if A is a subset of B, we also say that

B contains A. It follows immediately
from the definition that A and B are
equal if and only if A is a subset of B
and B is a subset of A. Thus, every
set is a subset of itself. Moreover, the
empty set is a subset of every set be
cause the condition X belongs to the
empty set implies'that X belongs to A
is satisfied vacuously."

"Satisfied vacuously" means that
"there is no element X in either [the
empty set] or A to which the condition
may be applied."

And all this is only page 4!

M follows the same logic, and any
string contains the empty string.
Thus: A["" is always true.

Your question also raises two other
points. First, theTerm "null" can be
confusing. There is a character called
NUL ($C (o)) , which is rarely used in
M programs. Note the following
code:

SET X=$C(O) W $L(X),""[X!
SET Y="" W $L(Y),""[Y

will display

10
01

X contains a NUL, while Y contains
an empty string.

Finally, do not depend on "what the
system does" to decide what is stan
dard and what is not. It is possible
(and has happened) that several im
plementations behave the same, and
are all wrong.

Question: We use a file in which we
keep device control codes. Recently

February 1993

we installed an upgrade and noticed
some changes. In the old version, the
code for clearing the screen on a
VT220 was:

#,*27,*~l.*50,*74,*27,*91,*72

In the new system, the code is:

#,$C(27,91,50,74,27,91,72)

In both cases the screen cleared and
the cursor was in the upper left comer.
The first code left $X=0, however,
while the second code left $X =7.
Why is there a difference? I thought
the W *X and W $C(X) were inter
changeable.

Editors: The standard does not treat
$C(X) and *X the same. $CHAR has a
very specific, unambiguous meaning
as long as you sta, in the ASCII char
acter set. $CHAR and $ASCII are exact
inverses of each other with the excep
tion of the handling of ASCII 0. The
effect of w $CHAR (something) on $X
and $Y is predictable.

The WRITE *X (as well as the READ
*X) are in the original standard as "es
cape hatches" for the vendors to do
terminal handling not provided by the
standard. As such, the side effects are
completely implementation-depen
dent. You will find that, generally,
systems that updated $X the same for
W *X as for W $C(X) also provided
the (nonstandard) capability of SET
ing $X to allow for correction. (This
was true several years ago, but is less
true now as more vendors provide
SETable $X and $Y in anticipation of
the next standard.) Thus, if the vendor
is supplying the code to clear the
screen, and is using WRITE* syntax,
it will generally look something like:

W *27,*91,*50,*74,*27,*91,*72
S $X=O,$Y=O

This problem with handling devices is
probably why you have a file of de
vice functions to begin with. The

functionality you want to perform is,
by definition, nonstandard and non
portable.

All this will change with the next stan
dard. The new X3. 64 binding has sev
eral features not currently available.
First, there is the potential for greatly
increased functionality beyond the
W #!?X capability we now have.
Second, we can find out what con
trolmnemonics are supported pro
grammatically. So if W /CUP does
not move the cursor to the upper left
comer, you'll be able to tell by check
ing the new $DEVICE special variable.

♦:♦

Just Ask! is the forum for sharing the
wealth of information our community
has acquired. Send your questions to
the Just Ask! editors atM Computing.
We regret we cannot respond to re
quests except in this space.

New Products for M Users

Arnet Corp. (Nashville) has a report
for value-added resellers (V ARs),
system integrators, MIS profession
als, and users who need more infor
mation on serial communications.
"How to Get Optimum 1/0 Perfor
mance" covers connectivity solu
tions, multiuser boards' functions and
features, and technical information
on multiuser boards. It should be use
ful to those environments with a vari
ety of operating systems and com
puter platforms. Contact Linda
Cullum, Marketing Relations, Arnet
Corp., #6, 618 Grassmere Park
Drive, Nashville, TN 37211. Phone:
615-834-8000; Fax: 615-834-5399.

February 1993

Antrim Corp. (Plano, TX) now can
port its laboratory systems, financial
systems, and blood bank systems to
Digital Equipment Corp.'s (Marl
boro, MA) 64-bit Alpha AXP RISC
platforms. Digital's computing archi
tecture, intended to last for the next
twenty-five years, supports fast, uni
processor and multiprocessor imple
mentations from palmtops to super
computers. The two companies are
offering Alpha AXP technology to all
medical laboratories in the United
States and Canada.

lnterSystems Corp. (Cambridge,
MA) just announced a new version of
its Open M/SQL relational database
management system for use with M
systems from Micronetics Develop
ment Corp. Open M/SQL runs on top
of a number of host ANSI M systems,
and it is apparently the first product to
enable SQL queries to be embedded
in M programs that comply with the
draft ANSI/ISO SQL2 standard. This
brings to three the number of Open M/
SQL products available for use with
MSM: Developer, M/PACT, and
RDBMS Engine.

M COMPUTING 17

